An Algebraic Language for Specifying Quantum Networks

Anita Buckley¹ Pavel Chuprikov¹ Rodrigo Otoni¹ Robert Soulé² Robert Rand³ Patrick Eugster¹

¹ USI Lugano, Switzerland

² Yale University, USA

³ University of Chicago, USA

Quantum networks are networks connecting quantum capable devices

Communication qubits designated to establish connections between devices

- Communication qubits designated to establish connections between devices
- Distributed entanglement: communication qubits sharing a correlated random secret

Quantum networks are networks connecting quantum capable devices

- Communication qubits designated to establish connections between devices
- Distributed entanglement: communication qubits sharing a correlated random secret

Benefits: scaling of quantum computation and secure communication

- teleportation
- entanglement based QKD

¹[IBM Quantum: Development Roadmap 2023]

Quantum networks are coming into reality

DOI:10.1145/3524455

A deep dive into the quantum Internet's potential to transform and disrupt.

BY I ASZLO GYONGYOSI AND SANDOR IMPE

Advances in the Quantum Internet

QUANTUM INFORMATION WILL not only reformulate our view of the nature of computation and communication but will also open up fundamentally new possibilities for realizing high-performance computer architecture and telecommunication networks. Since our data will no longer remain safe in the traditional Internet when commercial quantum computers become fully available, 1,2,8,15,34 there will be a need for a fundamentally different network structure: the quantum Internet, 22,25,32,33,45,47 While quantum computational supremacy refers to tasks and problems that quantum computers can solve but are beyond the capability of classical computers, the quantum supremacy of the quantum Internet identifies the properties and attributes that the quantum Internet offers but are unavailable in the traditional Internet.

a While "surremacy" is a concent used to describe the theory of computational complexity. It and not a specific device (like a quantum computer), the supremacy of the quantum internet in the current context refers to the collection of those advanced networking properties and attributes that are bround the canabilities of the traditional Internet.

The quantum Internet uses the fundamental concents of quantum mechanics for networking (see Sidehars 1-7 in the online Supplementary Information at https://dl.acm.org/doi/ 10.1145/3524455). The main attributes of the quantum Internet are advanced quantum phenomena and protocols (such as quantum superposition and quantum entanglement, quantum teleportation, and advanced quantum coding methods) unconditional security (quantum cryptography) and an entangled network structure.

In contrast to traditional repeaters.5 quantum repeaters cannot apply the receive-copy-retransmit mechanism because of the so-called no-cloning theorem, which states that it is impossible to make a perfect copy of a quantum system (see Sidebar 4). This fundamental difference between the nature of classical and quantum information does not just lead to fundamentally different networking mechanisms: it also necessitates the definition of novel networking services in a quantum Internet scenario Quantum memories in quantum repeater units are a fundamental part of any global-scale quantum Internet. A challenge connected to quantum memory units is the noise quantum memories adds to storing quantum systems. However, while quantum repeaters can be realized without requiring quantum memories, these units are in fact, necessary to guarantee optimal performance in any high-performance quantum-networking scenario.

In 2019, the National Quantum h. Traditional reneaters rely on signal amplification

» kev insights

- The quantum Internet is an adequate encount to the encurity issues that will become relevant as commercial quantum
- computers bit the market The augustum internet is based on the fundamentals of quantum machanics to provide advanced, high-security network
- canabilities and services not available in a traditional Internet setting.

Quantum networks are coming into reality

Quantum networks are coming into reality

The internet as it exists today involves sending strings of digital bits, or 0s and

optical signals, to transmit information. A quantum interact, which could be us

on or link on countym computers, would use quantum bits inste

diamond with an atom-sized hole. Meanwhile, researchers at the

from the server.

immunication frequencies (1 350 pm), we demonstrate

two nodes separated by a loop of optical

Bell pair: a pair of entangled qubits

- Fundamental resource in quantum networks
- Bell pair is a pair of entangled qubits:
 R~B distributed between nodes R and B
- No headers: control information needs to be sent via separate classical channels

Artwork by Sandbox Studio, Chicago with Ana Kova Image by Andrij Borys Associates, using Shutterstock

Bell pair: a pair of entangled qubits

- Fundamental resource in quantum networks
- Bell pair is a pair of entangled qubits:
 R~B distributed between nodes R and B
- No headers: control information needs to be sent via separate classical channels

Artwork by Sandbox Studio, Chicago with Ana Kova Image by Andrij Borys Associates, using Shutterstock

Classical network

¹[Kozlowski and Wehner: NANOCOM 2019], ²[Quantum Internet Research Group: RFC 9340 2023]

Classical network

Quantum network

Verification and optimization

Verification and optimization

PROBLEM

How to make sure that quantum networks behave as intended?

Verification and optimization

PROBLEM

How to make sure that quantum networks behave as intended?

• Does a protocol establish Bell pairs between the specified end nodes?

PROBLEM

How to make sure that quantum networks behave as intended?

- Does a protocol establish Bell pairs between the specified end nodes?
- · Are two protocols equivalent?

PROBLEM

How to make sure that quantum networks behave as intended?

- Does a protocol establish Bell pairs between the specified end nodes?
- Are two protocols equivalent?
- Can a protocol execute with a given number of resources?

PROBLEM

How to make sure that quantum networks behave as intended?

- Does a protocol establish Bell pairs between the specified end nodes?
- Are two protocols equivalent?
- · Can a protocol execute with a given number of resources?
- Can protocols run in parallel without interfering with each other?

PROBLEM

How to make sure that quantum networks behave as intended?

- Does a protocol establish Bell pairs between the specified end nodes?
- Are two protocols equivalent?
- Can a protocol execute with a given number of resources?
- Can protocols run in parallel without interfering with each other?

SOLUTION

Provide formalism to answer these types of questions about quantum networks

- Syntax and semantics
 - provide abstractions for quantum network primitives: create cr, transmit tr, swap sw,...
 - model multiround behavior, catering for highly synchronized nature of quantum networks
 - capture resource sharing (protocols competing for available Bell pairs)

- Syntax and semantics
 - provide abstractions for quantum network primitives: create cr, transmit tr, swap sw,...
 - model multiround behavior, catering for highly synchronized nature of quantum networks
 - capture resource sharing (protocols competing for available Bell pairs)
- Algebraic structure based on Kleene algebra with tests (KAT)
 - with (novel) axioms capturing round synchronization

- Syntax and semantics
 - provide abstractions for quantum network primitives: create cr, transmit tr, swap sw,...
 - model multiround behavior, catering for highly synchronized nature of quantum networks
 - capture resource sharing (protocols competing for available Bell pairs)
- Algebraic structure based on Kleene algebra with tests (KAT)
 - with (novel) axioms capturing round synchronization
- Formal results
 - proofs of soundness and completeness of equational theory
 - decidability of semantic equivalences

$$r \triangleright o \colon a \mapsto \begin{cases} o \bowtie a \backslash r & \text{if } r \subseteq a \\ \emptyset \bowtie a & \text{otherwise} \end{cases}$$

Swap $\{A \sim D, D \sim E\} \triangleright \{A \sim E\}$

Swap $\{A \sim D, D \sim E\} \triangleright \{A \sim E\}$ acting on input $\{A \sim D, A \sim D, D \sim E, D \sim E, B \sim E\}$

Input Bell pairs 9/16

Swap $\{A \sim D, D \sim E\} \triangleright \{A \sim E\}$ acting on input $\{A \sim D, A \sim D, D \sim E, D \sim E, B \sim E\}$

Input Bell pairs 9/16

Swap $\{A \sim D, D \sim E\} \triangleright \{A \sim E\}$ acting on input $\{A \sim C, A \sim C, D \sim E, D \sim E, B \sim E\}$

 $B\sim E$

Swap $\{A \sim D, D \sim E\} \triangleright \{A \sim E\}$ acting on input $\{A \sim C, A \sim C, \underline{D \sim E}, \underline{D \sim E}, \underline{B \sim E}\}$

 $B\sim E$


```
\begin{array}{ll} \operatorname{swap} & \operatorname{sw}\langle A{\sim}B @ C \rangle \triangleq \{\!\!\{A{\sim}C, B{\sim}C\}\!\!\} \rhd \{\!\!\{A{\sim}B\}\!\!\} \\ \operatorname{transmit} & \operatorname{tr}\langle A{\rightarrow}B{\sim}C \rangle \triangleq \{\!\!\{A{\sim}A\}\!\!\} \rhd \{\!\!\{B{\sim}C\}\!\!\} \\ \operatorname{create} & \operatorname{cr}\langle A \rangle \triangleq \emptyset \rhd \{\!\!\{A{\sim}A\}\!\!\} \\ \operatorname{wait} & \operatorname{wait}\langle r \rangle \triangleq r \rhd r \\ \operatorname{fail} & \operatorname{fail}\langle r \rangle \triangleq r \rhd \emptyset \end{array}
```

$$\begin{array}{lll} \operatorname{swap} & \operatorname{sw}\langle A{\sim}B @ C \rangle \triangleq \{\!\!\{A{\sim}C, B{\sim}C\}\!\!\} \rhd \{\!\!\{A{\sim}B\}\!\!\} \\ \operatorname{transmit} & \operatorname{tr}\langle A{\rightarrow}B{\sim}C \rangle \triangleq \{\!\!\{A{\sim}A\}\!\!\} \rhd \{\!\!\{B{\sim}C\}\!\!\} \\ \operatorname{create} & \operatorname{cr}\langle A \rangle \triangleq \emptyset \rhd \{\!\!\{A{\sim}A\}\!\!\} \\ \operatorname{wait} & \operatorname{wait}\langle r \rangle \triangleq r \rhd r \\ \operatorname{fail} & \operatorname{fail}\langle r \rangle \triangleq r \rhd \emptyset \\ \end{array}$$

$$\begin{array}{lll} \operatorname{swap} & \operatorname{sw}\langle A{\sim}B @ C \rangle \triangleq \{\!\{A{\sim}C,B{\sim}C\}\!\} \rhd \{\!\{A{\sim}B\}\!\} \\ \operatorname{transmit} & \operatorname{tr}\langle A{\rightarrow}B{\sim}C \rangle \triangleq \{\!\{A{\sim}A\}\!\} \rhd \{\!\{B{\sim}C\}\!\} \\ \operatorname{create} & \operatorname{cr}\langle A \rangle \triangleq \emptyset \rhd \{\!\{A{\sim}A\}\!\} \\ \operatorname{wait} & \operatorname{wait}\langle r \rangle \triangleq r \rhd r \\ \operatorname{fail} & \operatorname{fail}\langle r \rangle \triangleq r \rhd \emptyset \\ \end{array}$$

swap
$$\operatorname{sw}\langle A \sim B @ C \rangle \triangleq \{\{A \sim C, B \sim C\}\} \rhd \{\{A \sim B\}\}\}$$
 transmit $\operatorname{tr}\langle A \rightarrow B \sim C \rangle \triangleq \{\{A \sim A\}\}\} \rhd \{\{B \sim C\}\}$ create $\operatorname{cr}\langle A \rangle \triangleq \emptyset \rhd \{\{A \sim A\}\}\}$ wait $\operatorname{wait}\langle r \rangle \triangleq r \rhd r$ fail $\operatorname{fail}\langle r \rangle \triangleq r \rhd \emptyset$

$$\begin{array}{lll} \mathrm{swap} & \mathrm{sw}\langle A{\sim}B @ C \rangle \triangleq \{\!\{A{\sim}C, B{\sim}C\}\!\} \rhd \{\!\{A{\sim}B\}\!\} \\ \mathrm{transmit} & \mathrm{tr}\langle A{\rightarrow}B{\sim}C \rangle \triangleq \{\!\{A{\sim}A\}\!\} \rhd \{\!\{B{\sim}C\}\!\} \\ \mathrm{create} & \mathrm{cr}\langle A \rangle \triangleq \emptyset \rhd \{\!\{A{\sim}A\}\!\} \\ \mathrm{wait} & \mathrm{wait}\langle r \rangle \triangleq r \rhd r \\ \mathrm{fail} & \mathrm{fail}\langle r \rangle \triangleq r \rhd \emptyset \\ \end{array}$$

$$p, q ::= 0 \mid 1 \mid r \triangleright o \mid p + q \mid p \cdot q \mid p \parallel q \mid p; q \mid p^*$$

$$p, q ::= 0 \mid 1 \mid r \triangleright o \mid p + q \mid p \cdot q \mid p \parallel q \mid p; q \mid p^*$$

basic action

abort

$$p, q ::= 0 \mid 1 \mid r \triangleright o \mid p + q \mid p \cdot q \mid p \parallel q \mid p; q \mid p^*$$

basic action

BellKAT syntax

BellKAT syntax

BellKAT syntax

Protocol specification in BellKAT

Protocol specification in BellKAT

Protocol specification in BellKAT

$$\begin{aligned} & (\operatorname{tr}\langle C \to A \sim D \rangle \parallel \operatorname{tr}\langle E \to B \sim D \rangle \parallel \operatorname{tr}\langle E \to E \sim D \rangle); \\ & (\operatorname{tr}\langle C \to A \sim D \rangle \parallel \operatorname{tr}\langle C \to B \sim D \rangle \parallel \operatorname{tr}\langle E \to E \sim D \rangle); \\ & (\operatorname{sw}\langle A \sim E @ D \rangle \parallel \operatorname{sw}\langle B \sim E @ D \rangle) \end{aligned}$$

Syntax							
,	Nodes		A, B, C,				
	Bell pairs	$BP \ni bp ::=$	N~N				
	Multisets	$\mathcal{M}(BP) \ni a, b, r, o ::=$	$\{bp_1,, bp_k\}$	KA axioms			
	Tests	$T \ni t, t' ::=$	1 no test b multiset absence	$(p+q)+r \equiv p+(q+r)$	KA-Plus-Assoc	$p ; 1 \equiv p$	KA-Seq-One
		1	t ∧ t' conjunction	$p + q \equiv q + p$	KA-Plus-Comm	$1; p \equiv p$	KA-One-Seq
		i	$t \lor t'$ disjunction	$p + 0 \equiv p$	KA-Plus-Zero	$0 ; p \equiv 0$	KA-Zero-Seq
		į	$t \uplus b$ multiset union	$p + p \equiv p$	KA-Plus-Idem	$p ; 0 \equiv 0$	KA-Seq-Zero
A	tomic actions	$\Pi \ni \pi, x, y ::=$	[t]r ► o	$(p;q); r \equiv p; (q;r)$	KA-Seq-Assoc	$1 + p$; $p^* \equiv p^*$	KA-Unroll-L
	Policies	P ∋ p, q ::=	0 abort 1 skip or no-round	$p;(q+r) \equiv p;q+p;r$	KA-Seq-Dist-L	$p: r \le r \Rightarrow p^*: r \le r$	KA-Lep-L
		1	π atomic action	$(p+q)$; $r \equiv p$; $r+q$; r	KA-Seq-Dist-R	$1 + p^*; p \equiv p^*$	KA-UNROLL-R
		i	r > o basic action			$r; p \le r \Rightarrow r; p^* \le r$	KA-LFP-R
		į	[t]p guarded policy	SKA axioms for		$r; p \le r \Rightarrow r; p \le r$	KA-LFF-K
		!	p + q nondeterministic choice p · q ordered composition	$(p \parallel q) \parallel r \equiv p \parallel (q \parallel r)$	SKA-Prl-Assoc		SKA-Prl-Comm
		}	$p \cdot q$ ordered composition $p \parallel q$ parallel composition			2 11 4 11 2	
		ì	p; q sequential composition	$p \parallel (q+r) \equiv p \parallel q+p \mid$		1 p ≡ p	SKA-ONE-PRL
		i	p* Kleene star	$(x; p) \parallel (y; q) \equiv (x \parallel y); (y) \equiv (x \parallel y) = ($	$p \parallel q$) SKA-Prl-Seq	$0 \parallel p \equiv 0$	SKA-Zero-Prl
	Basic actions	r ⊳ o ::=	$[1]r \triangleright o + [r]\emptyset \triangleright \emptyset$	SKA axioms for			
	uarded policy	[t]p :=	$[t] \emptyset \triangleright \emptyset \cdot p$	$(p \cdot q) \cdot r \equiv p \cdot (q \cdot r)$	SKA-Ord-Assoc	$1 \cdot p \equiv p$	SKA-One-Ord
Test seman		$\langle t \rangle \in \mathcal{M}(BP) \rightarrow \{$	T ()	$p \cdot (q+r) \equiv p \cdot q + p \cdot r$		$p \cdot 1 \equiv p$	SKA-Ord-One
4	1≬a ≜ ⊤		$a \triangleq (dt b a \setminus b \land b \subseteq a) \lor db b a$	$(p+q) \cdot r \equiv p \cdot r + q \cdot r$	SKA-Ord-Dist-R	$0 \cdot p \equiv 0$	SKA-Zero-Ord
	b \a \delta \delta \pi \pi a		$a \triangleq (f \land a \square (f \land b a), \text{ with } \square \text{ is either } \land \text{ or } \lor$	$(x; p) \cdot (y; q) \equiv (x \cdot y); (p)$	· q) SKA-Ord-Seq	$p \cdot 0 \equiv 0$	SKA-Ord-Zero
Single roun	d semantics			Boolean axioms (in addition	1 to monotone axioms)	
	($p) \in \mathcal{M}(BP) \rightarrow \mathfrak{T}$	$P(\mathcal{M}(BP) \times \mathcal{M}(BP))$	$1 \uplus b \equiv 1$	BOOL-ONE-U		
		0)a ≜ Ø			CONI-SUBSET $(t \wedge t')$	$) \uplus b \equiv t \uplus b \wedge t' \uplus b$ Bo	
	,	1)a ± {∅ ⋈ a}	if r ⊆ a and (t) a = T	()	Bool-Disi-U (t v t')	$) \uplus b \equiv t \uplus b \lor t' \uplus b$ B	ool-Disj-U-Dist
	([t]r ▶	o)a ≜ { \ 0 \ 0	otherwise	Network axioms	BOOL-Disj-0		
	(p+	$q \mid a \triangleq (p) \mid a \cup (q)$	2	$[t]r \triangleright o \cdot [t']r' \triangleright o' \equiv [t$. (4 11 - 314 - 4	if $\hat{r} = r \uplus r'$ and $\hat{o} = o \uplus$	⊎ o' Net-Ord
	(p.			(1)			
	(p	q ≬a	a	$[t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t)]r' \triangleright o' \equiv [(t)]r' \triangleright o' \equiv [(t)]r' \mapsto o' \in [(t)]r' \mapsto o' \mapsto o' \in [(t)]r' \mapsto o' \mapsto $	$(\exists r') \land (r \uplus r)]r \triangleright o$	if $\hat{r} = r \uplus r'$ and $\hat{o} = o \uplus$	⊎ o' NET-PRL
Multi-roun	d semantics $\llbracket p brace$	$\in \mathcal{M}(BP) \rightarrow \mathcal{P}($	M(RP))	Single round axioms			
	[ν]		$\mathcal{M}(BP)$, where $\omega = \pi_1 \circ \pi_2 \circ \circ \pi_k$		$(p \parallel p') \cdot (q \parallel$	$ q' \le (p \cdot q) \ (p' \cdot q')$	SR-Exc
	[p]	$a \triangleq \bigcup_{\omega \in I(p)} \llbracket \omega \rrbracket_{I} a$		[1]0 ► 0 ≡ 1 Sr-One	$[b \wedge t]r$	$\triangleright o \equiv [(r \cup b) \land t]r \triangleright o$	Sr-Can
	[[e]],	a = {a}		$[\emptyset]r \triangleright o \equiv 0$ Sr-Zero	$[t]r \triangleright o + [t']r$	$\triangleright o \equiv [t \lor t']r \triangleright o$	SR-Plus
	$[[t]r \triangleright o]$	$a \triangleq \begin{cases} \{o \uplus a \backslash r\} \\ a \end{cases}$	if $r \subseteq a$ and $\{t\} a = \top$ otherwise				
Iπ	: 10: : 10: 1	$a \triangleq ([\![\pi_1]\!]_I \bullet [\![\pi_2]\!]_i$					
L'A:	1 7 ~2 7 · · · 9 ^k 1	- (Entill - Enzi	· · · · · · · · · · · · · · · · · · ·				

```
Syntax
                                                  N ::= A, B, C, ...
                 Nodes
               Bell pairs
                                           BP ∋ bo ::= N~N
                Multisets
                                M(BP) \ni a, b, r, o ::= \{b_0, ..., b_{D_k}\}
                  Tests
                                           T \ni t \ t' := 1
                                                                      no test
                                                                       multiset absence
                                                          t \wedge t'
                                                                      conjunction
                                                          t \vee t'
                                                                      disjunction
                                                          t \uplus b
                                                                       multiset union
                                        \Pi \ni \pi. x. u := [t]r \triangleright o
            Atomic actions
                                           P \ni p, q := 0
                Policies
                                                                       ahort
                                                                      skip or no-round
                                                                      atomic action
                                                          \pi
                                                                      basic action
                                                          r > 0
                                                                      guarded policy
                                                          [t]o
                                                                      nondeterministic choice
                                                          b + a
                                                                      ordered composition
                                                          p \cdot q
                                                          p \parallel q
                                                                      parallel composition
                                                                      sequential composition
                                                          p:q
                                                                      Kleene star
             Basic actions
                                               r ⊳ o ::= [1]r ► o + [r]0 ► 0
            Guarded policy
                                               [t]\rho := [t]\emptyset \triangleright \emptyset \cdot \rho
Test semantics
```

```
\{t\} \in \mathcal{M}(BP) \rightarrow \{\top, \bot\}
                  11 Da ≐ ⊤
                                                                   dt \uplus bba \triangleq (dtba \setminus b \land b \subseteq a) \lor dbba
                  ba = b \not\subseteq a
                                                                   dt \Box t' ba \triangleq dt ba \Box dt' ba, with \Box is either \land or \lor
Single round semantics
                                          \{p\} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                          10 ha ± 0
                                           (1)a \triangleq \{0 \bowtie a\}
                                                                \{o \bowtie a \mid r\} if r \subseteq a and \{t\} a = \top
                               ([t]r \triangleright a)a \triangleq
                                                                                               otherwise
                                    |p+q|a = |p|a \cup |q|a
                                     (p \cdot q)a \triangleq ((p) \cdot (q))a
                                    (p || q)a \triangleq ((p) || (q))a
Multi-round semantics
                                       \llbracket p \rrbracket \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                     \llbracket \omega \rrbracket_{t} \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP)), \text{ where } \omega = \pi_{1} \circ \pi_{2} \circ \dots \circ \pi_{k}
                                      [\![p]\!]a \triangleq \bigcup_{\omega \in I(p)} [\![\omega]\!]_I a
                                     \|\epsilon\|_{la} \triangleq \{a\}
                                                             \{a \uplus a \mid r\} if r \subseteq a and \{t\} a = T
```

 $[\![\pi_1 : \pi_2 : ... : \pi_k]\!]_{Ia} \triangleq ([\![\pi_1]\!]_{I} \bullet [\![\pi_2 : ... : \pi_k]\!]_{I})_{a}$

KA axioms			
$(p+q)+r\equiv p+(q+r)$	KA-Plus-Assoc	$p ; 1 \equiv p$	KA-Seq-O
$p + q \equiv q + p$ KA-Plus-Comm		$1; p \equiv p$	KA-One-S
$p + 0 \equiv p$	KA-Plus-Zero	$0; p \equiv 0$	KA-Zero-S
$p + p \equiv p$	KA-Plus-Idem	$p ; 0 \equiv 0$	KA-Seq-Ze
$(p;q); r \equiv p; (q;r)$	KA-Seq-Assoc	$1 + p ; p^* \equiv p^*$	KA-Unrol
p ; $(q+r) \equiv p$; $q+p$; r	KA-Seq-Dist-L	$p ; r \le r \Rightarrow p^* ; r \le$	r KA-LF
$(p+q) ; r \equiv p ; r+q ; r$	KA-Seq-Dist-R	$1 + p^* ; p \equiv p^*$	KA-Unrol
		$r : p \le r \Rightarrow r : p^* \le$	r KA-LFI
SKA axioms for			
$(p q) r \equiv p (q r$) SKA-Prl-Asso	c $p \parallel q \equiv q \parallel p$	SKA-Prl-Com
$p \parallel (q+r) \equiv p \parallel q+p$	r SKA-Prl-Dis	T $1 \parallel p \equiv p$	SKA-One-P
$(x; p) \parallel (y; q) \equiv (x \parallel y);$	$(p \parallel q)$ SKA-Prl-Se	$Q = 0 \parallel p \equiv 0$	SKA-Zero-P
SKA axioms for			
$(p \cdot q) \cdot r \equiv p \cdot (q \cdot r)$	SKA-Ord-Assoc	$1 \cdot p \equiv p$	SKA-One-O
$p \cdot (q + r) \equiv p \cdot q + p \cdot$	r SKA-Ord-Dist-L	$p \cdot 1 \equiv p$	SKA-ORD-O
$(p + q) \cdot r \equiv p \cdot r + q$	r SKA-Ord-Dist-R	$0 \cdot p \equiv 0$	SKA-Zero-Or
$(x; p) \cdot (y; q) \equiv (x \cdot y); (j$	o · q) SKA-Ord-Seq	$p \cdot 0 \equiv 0$	SKA-Ord-Ze
Boolean axioms (in additio	n to monotone axio	ns)	
$1 \uplus b \equiv 1$	BOOL-ONE-U		
$b \wedge (b \uplus b') \equiv b$ Bool		$t') \uplus b \equiv t \uplus b \wedge t' \uplus b$	
$b \lor b' \equiv b \cup b'$	Bool-Disi-U (t ∨	$t') \uplus b \equiv t \uplus b \lor t' \uplus b$	Bool-Disj-U-D
Network axioms			
$[t]r \triangleright o \cdot [t']r' \triangleright o' \equiv [t]$	$\land (t' \uplus r)]\hat{r} \triangleright \hat{o}$	if $\hat{r} = r \uplus r'$ and $\hat{o} =$	o ⊎ o′ Net-C
$[t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [($	$t \uplus r') \wedge (t' \uplus r)]\hat{r} \blacktriangleright i$	\hat{p} if $\hat{r} = r \uplus r'$ and $\hat{p} = r'$	o ⊎ o′ Net-l
Single round axioms			
	(= II = f) (-11-15-27-2117-7-15	Sr-F
$[1]\emptyset \triangleright \emptyset \equiv 1$ Sr-One		$ q q' \le (p \cdot q) (p' \cdot q')$ $ r > 0 \equiv [(r \cup b) \land t]r > 0$	
$[\emptyset]r \triangleright o \equiv 0$ Sr-Zero			
	$\lfloor t \rfloor r \triangleright o + \lfloor t'$	$]r \triangleright o \equiv [t \lor t']r \triangleright o$	Sr-Pl

	KA axioms $ \begin{aligned} &(p+q)+r\equiv p+(q+r) & \text{KA-PLUs-Assoc} & p:1\equiv p & \text{KA-Sug-One} \\ &p+q\equiv q+p & \text{KA-PLUs-Comm} & 1:p\equiv p & \text{KA-One-Sug} \\ &p+0\equiv p & \text{KA-PLUs-Zzino} & 0:p\equiv 0 & \text{KA-PLUs-Szino} \end{aligned} $
Atomic actions $\Pi \ni \pi, x, y := \begin{cases} t \mid t' \\ t \mid b \\ t \mid b \end{cases}$ multiset union Policies $P \ni p, q := 0$ abort Policies $P \ni p, q := 0$ abort π atomic action $\pi \models 0$ basic action $\pi \models 0$ basic action $\pi \models 0$ parameter policy $p \models q$ numeter ministic choice	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
p - q ordered composition $ p q $ parallel composition $ p q $ sequential composition $ p q $ S	$ (p \parallel q) \ r = p \ (q \ r) $ SKA-PitASSOC $p \ q = q \ p$ SKA-PitCoxM $ p \ (q + r) = p \ q + p \ r $ SKA-PitDist $1 \ p \equiv p $ SKA-One-Pit. $ (x : p) \ (y : q) = (x \ y) : (p \ q) $ SKA-PitDist. $0 \ p \equiv 0 $ SKA-ZinPit. SKA axioms for $ (p \cdot q) : r = p \cdot (q \cdot r) $ SKA-One-Assoc $1 \cdot p \equiv p $ SKA-One-One $ (p \cdot q) : r \equiv p \cdot q + p \cdot r $ SKA-One-Distr-L $ (p + q) : r \equiv p \cdot r + q \cdot r $ SKA-One-Distr-R $ (p + q) : r \equiv p \cdot r + q \cdot r $ SKA-One-Distr-R $ (p + q) : r \equiv p \cdot r + q \cdot r $ SKA-One-Distr-R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x:p) \cdot (y:q) = (x\cdot y) : (p\cdot q) \text{SKA-ORD-SEQ} \qquad p \cdot 0 \equiv 0 \text{SKA-ORD-ZERO}$ Boolean axioms (in addition to monotone axioms) $1 \uplus b \equiv 1 \text{Boot-ONE-U} \qquad (t - t) \uplus b \equiv 1 \uplus b \Leftrightarrow t \not b \Leftrightarrow b \mapsto t \not b \Leftrightarrow t \not b \Leftrightarrow t \not b \mapsto t \not b \Leftrightarrow t \not b \mapsto t \not b \Leftrightarrow t \not b \mapsto t \not b$
$(p+q)a \triangleq (p)a \cup \{q\}a$ $(p+q)a \triangleq (p)a \cup \{q\}a$ $(p+q)a \triangleq (p) \cdot \{q\}a$ $(p+q)a \triangleq (p+q)a$ Multi-round semantics $[p] = \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP))$ $[p] = \mathcal{M}(BP) \rightarrow \mathcal{M}(BP)$ $[p] = $	


```
Syntax
                                                     N ::= A, B, C, ...
                  Nodes
                Bell pairs
                                             BP \ni hn ::= N\sim N
                 Multisets
                                  M(BP) \ni a, b, r, o ::= \{\{bp_1, ..., bp_k\}\}
                   Tests
                                              T \ni t \ t' := 1
                                                                           no test
                                                                           multiset absence
                                                                           conjunction
                                                                           disjunction
                                                                           multiset union
                                          \Pi \ni \pi, x, y := [t]r \triangleright o
             Atomic actions
                 Policies
                                             P \ni p, q := 0
                                                                           ahort
                                                                           skip or no-round
                                                            \pi
                                                                           atomic action
                                                                           basic action
                                                             \lceil t \rceil \rho
                                                                           guarded policy
                                                                          nondeterministic choice
                                                             p+q
                                                                           ordered composition
                                                             0 - a
                                                            p || a
                                                                          parallel composition
                                                                           sequential composition
                                                             p : q
                                                                           Kleene star
              Basic actions
                                                 r \triangleright o ::= [1]r \triangleright o + [r]0 \triangleright 0
             Guarded policy
                                                  [t]p ::= [t]\emptyset \triangleright \emptyset \cdot p
```

```
Test semantics
                                         dtb \in M(BP) \rightarrow \{T, \bot\}
                (1)a ≜ ⊤
                                                             (t \uplus b)a \triangleq ((t)a \setminus b \land b \subseteq a) \lor (b)a
                dbba = b \not\subseteq a
                                                             (t \square t')a \triangleq (t)a \square (t')a, with \square is either \wedge or \vee
Single round semantics
                                                \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                      (0)
                                       10ha ± 0
                                      (1)a ± (0 m a)
                                                           \{a\bowtie a \mid r\} if r\subseteq a and \{t\}a=\top
                                                                                      otherwise
                                                       (p)a \cup (q)a
                                  (p · q)a ≜
                                                       ((p) · (q))a
                                 (p || q)a = ((p) || (q))a
Multi-round semantics
                                              \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                              \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP)), where \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                   \|p\|a \triangleq \bigcup_{\alpha \in I(p)} \|\omega\|_I a
                                  [e]_{Ia} \triangleq \{a\}
                                                       \{o \uplus a \mid r\} if r \subseteq a and \emptyset t \lozenge a = \top
                                                                                   otherwise
              [\![\pi_1; \pi_2; \dots; \pi_k]\!]_I a \triangleq ([\![\pi_1]\!]_I \bullet [\![\pi_2; \dots; \pi_k]\!]_I) a
```

KA axioms			
$(p+q)+r \equiv p+(q+r)$	KA-Plus-Assoc	$p ; 1 \equiv p$	KA-Seq-On
$p + q \equiv q + p$	KA-Plus-Comm	$1 ; p \equiv p$	KA-One-Se
$p + 0 \equiv p$	KA-Plus-Zero	$0; p \equiv 0$	KA-Zero-Se
$p + p \equiv p$	KA-Plus-Idem	$p ; 0 \equiv 0$	KA-Seq-Zero
$(p;q); r \equiv p; (q;r)$	KA-Seq-Assoc	$1 + p ; p^* \equiv p^*$	KA-Unroll-
$p; (q + r) \equiv p; q + p; r$	KA-Seq-Dist-L	$p : r \le r \Rightarrow p^* : r \le r$	KA-Lfp-
$(p+q)$; $r \equiv p$; $r+q$; r	KA-Seq-Dist-R	$1 + p^* ; p \equiv p^*$	KA-Unroll-
		$r: p \le r \Rightarrow r: p^* \le r$	KA-LFP-I
SKA axioms for			
$(p q) r \equiv p (q r)$) SKA-Prl-Assoc	$p \parallel q \equiv q \parallel p$	SKA-Prl-Comm
$p \parallel (q+r) \equiv p \parallel q+p$	r SKA-Prl-Dist	$1 \parallel p \equiv p$	SKA-One-Pri
$(x; p) \parallel (y; q) \equiv (x \parallel y); ($	$(p \parallel q)$ SKA-Prl-Seq	$0 p \equiv 0$	SKA-Zero-Pri
SKA axioms for			
$(p \cdot q) \cdot r \equiv p \cdot (q \cdot r)$	SKA-Ord-Assoc	$1 \cdot p \equiv p$	SKA-ONE-ORD
$p \cdot (q + r) \equiv p \cdot q + p$	r SKA-Ord-Dist-L	$p \cdot 1 \equiv p$	SKA-Ord-One
$(p+q) \cdot r \equiv p \cdot r + q \cdot r$	r SKA-Ord-Dist-R	$0 \cdot p \equiv 0$	SKA-Zero-Ore
$(x; p) \cdot (y; q) \equiv (x \cdot y); (p)$	· q) SKA-Ord-Seq	$p \cdot 0 \equiv 0$	SKA-Ord-Zero
Boolean axioms (in addition	n to monotone axiom	s)	
$1 \uplus b \equiv 1$	BOOL-ONE-U		
$b \wedge (b \uplus b') \equiv b$ Book	CONT-STIBSET	$(b) \otimes b \equiv t \otimes b \wedge t' \otimes b \otimes b$	
$b \lor b' \equiv b \cup b'$	Bool-Disi-U $(t \lor t$	$(b) \oplus b \equiv t \oplus b \vee t' \oplus b$	3001-Disj-U-Dist
Network axioms			
$[t]r \triangleright o \cdot [t']r' \triangleright o' \equiv [t$	$\wedge (t' \uplus r)]\hat{r} \triangleright \hat{o}$	if $\hat{r} = r \uplus r'$ and $\hat{o} = o$	⊎ o' Net-Ori
$[t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [($	$t \uplus r') \land (t' \uplus r)]\hat{r} \triangleright \hat{o}$	if $\hat{r} = r \uplus r'$ and $\hat{o} = o$	⊎ o' Net-Pr
Single round axioms			
	(n II n/) . ($ q' \le (p \cdot q) (p' \cdot q')$	SR-Exc
F-10 0 0 0			
$[1]\emptyset \triangleright \emptyset \equiv 1$ Sr-One	[b A d]	$r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o$	o Sr-Can

 $[\pi_1 : \pi_2 : ... : \pi_k]_{i,a} \triangleq ([\pi_1]_i \bullet [\pi_2 : ... : \pi_k]_i)_a$

```
Syntax
                    Nodes
                                                          N := ABC
                   Bell pairs
                                                 BP ∋ hn ::= N~N
                                                                                                                                                     KA aviome
                     Tests
                                                   T \ni t \ t' := 1
                                                                                                                                                           (p+q)+r \equiv p+(q+r)
                                                                                                                                                                                              KA-Plus-Assoc
                                                                                                                                                                                                                                   p:1 \equiv p
                                                                                                                                                                                                                                                               KA-SEO-ONE
                                                                                 multiset absence
                                                                                                                                                                                              KA-PLUS-COMM
                                                                                                                                                                                                                                   1: p \equiv p
                                                                                                                                                                                                                                                               KA-ONE-SEO
Multi-round semantics
                                                                                                      \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                                                               \llbracket p \rrbracket
                                                                                                      \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP)), \text{ where } \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                                                             \llbracket p \rrbracket a \triangleq \bigcup_{\omega \in I(p)} \llbracket \omega \rrbracket_I a
                                                                                                                           \{o \uplus a \mid r\} if r \subseteq a and \langle t \rangle a = \top
                                                    [[t]r \triangleright o]_{ta}
                                                                                                                                                                                      otherwise
                                                        qt \oplus bpa = (qtpa \setminus b \land b \subseteq a) \lor qbpa
                                                                                                                                                                                                                                       p \cdot 0 = 0
                                                                                                                                                                                                                                                           SKA-ORD-ZERO
                                                                                                                                                         (x; p) \cdot (y; q) \equiv (x \cdot y); (p \cdot q) SKA-ORD-SEQ
                dbba ± b ⊄ a
                                                       dt \Box t' ba \triangleq dt ba \Box dt' ba, with \Box is either \land or \lor
                                                                                                                                                     Boolean axioms (in addition to monotone axioms)
 Single round semantics
                                                 M(RP) \rightarrow \mathcal{P}(M(RP) \times M(RP))
                                                                                                                                                                                            BOOT-ONE-II
                                   10ha ± 6
                                                                                                                                                                                                                  (t \wedge t') \bowtie b = t \bowtie b \wedge t' \bowtie b Bool-Conj-U-Dist
                                                                                                                                                          b \wedge (b \bowtie b') \equiv b Bool-Cont-Subset
                                           4 (0 ma)
                                                                                                                                                                                                                  (t \lor t') \uplus b \equiv t \uplus b \lor t' \uplus b Bool-Disi-U-Dist
                                                                                                                                                                  b \lor b' \equiv b \cup b'
                                                                                                                                                                                           Bool-Dist-U
                                                     \{a\bowtie a \mid r\} if r \subseteq a and \{t\}a = T
                                                                             otherwise
                                                                                                                                                     Network axioms
                                                   (p)a∪(q)a
                                                                                                                                                           [t]r \models o \cdot [t']r' \models o' \equiv [t \land (t' \uplus r)]\hat{r} \models \hat{o}
                                                                                                                                                                                                                              if \hat{r} = r \bowtie r' and \hat{a} = a \bowtie a'
                                                  ((p) \cdot (q))a
                                                                                                                                                          [t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]\hat{r} \triangleright \hat{o}
                                                                                                                                                                                                                             if \hat{r} = r \uplus r' and \hat{o} = o \uplus o'
                                                                                                                                                                                                                                                                     NET-PRI
                              (p || q \( a \) = ±
 Multi-round semantics
                                                                                                                                                     Single round axioms
                                          \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP))
                                             \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP)), where \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                                                                                                                                                                                          (p || p') \cdot (q || q') \le (p \cdot q) || (p' \cdot q')
                                                                                                                                                                                                                                                                      Sp.Evc
                                                                                                                                                          [1]0 ► 0 = 1 Sr-One
                                        \triangleq \bigcup_{\alpha \in I(n)} [\![\omega]\!]_I a
                                                                                                                                                                                                                [b \land t]r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o
                                                                                                                                                                                                                                                                     SR-CAN
                                                                                                                                                          \lceil \emptyset \rceil_r \triangleright \rho = 0 Sp-Zero
                               \|e\|_{la} \triangleq \{a\}
                                                                                                                                                                                                       [t]r \triangleright o + [t']r \triangleright o \equiv [t \lor t']r \triangleright o
                                                                                                                                                                                                                                                                    Sp.Prits
                                                  \{a \bowtie a \mid r\} if r \subseteq a and At \land a = \top
                                                                          otherwise
```

```
Syntax
                     Nodes
                                                             N := ABC
                    Bell pairs
                                                    BP ∋ hn ::= N~N
                      Tests
                                      Single round semantics
                                                                                                                                                                      \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                                                                                                                 (p)
                Atomic action
                    Policies
                                                                                                                                                                        \{\emptyset\bowtie a\}
                                                                                                                                                                               \{o \bowtie a \mid r\} \quad \text{if } r \subseteq a \text{ and } \langle t \rangle a = \top
                                                                                                                                                                                                                                                otherwise
                                                                                      Kleene star
                                                                                                                                                               SKA axioms for
                 Rasic actions
                                                         r \triangleright o ::= [1]r \triangleright o + [r]0 \triangleright 0
               Guarded policy
                                                          [t]o := [t]0 \triangleright 0 \cdot o
                                                                                                                                                                         (p \cdot q) \cdot r \equiv p \cdot (q \cdot r) SKA-ORD-Assoc
                                                                                                                                                                                                                                                                            SKA-ONE-ORD
Test semantics
                                                                                                                                                                        p \cdot (q+r) \equiv p \cdot q + p \cdot r SKA-ORD-DIST-L
                                                                                                                                                                                                                                                     p \cdot 1 \equiv p
                                                                                                                                                                                                                                                                            SKA-ORD-ONE
                                       atb \in M(BP) \rightarrow \{T, \bot\}
                                                                                                                                                                         (p+q) \cdot r \equiv p \cdot r + q \cdot r SKA-ORD-DIST-R
                                                                                                                                                                                                                                                                            SKA-ZERO-ORD
                (1)a ≜ ⊤
                                                          (t \uplus b)a \triangleq (At)a \setminus b \wedge b \subseteq a) \vee (b)a
                                                                                                                                                                  (x : p) \cdot (y : q) \equiv (x \cdot y) : (p \cdot q) SKA-Ord-Seq
                                                                                                                                                                                                                                                                           SKA-ORD-ZERO
                                                                                                                                                                                                                                                     \rho \cdot 0 \equiv 0
                bba \triangleq b \not\subset a
                                                          dt \Box t' ba = dt ba \Box dt' ba, with \Box is either \wedge or \vee
                                                                                                                                                               Boolean axioms (in addition to monotone axioms)
Single round semantics
                                               \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                                                                                                                                                                                         BOOT-ONE-II
                                     10ha ± 0
                                                                                                                                                                                                                               (t \wedge t') \bowtie b = t \bowtie b \wedge t' \bowtie b Bool-Conj-U-Dist
                                                                                                                                                                    b \wedge (b \uplus b') \equiv b Bool-Conj-Subset
                                              4 (0 ma)
                                                                                                                                                                                                                               (t \lor t') \uplus b \equiv t \uplus b \lor t' \uplus b Bool-Disi-U-Dist
                                                                                                                                                                            b \lor b' \equiv b \cup b'
                                                                                                                                                                                                        BOOL-DIST-U
                                                        \{a\bowtie a \mid r\} if r\subseteq a and \{t\}a=\top
                                                                                 otherwise
                                                                                                                                                               Network axioms
                                                     (p)a∪(q)a
                                                                                                                                                                     [t]r \models o \cdot [t']r' \models o' \equiv [t \land (t' \uplus r)]\hat{r} \models \hat{o}
                                                                                                                                                                                                                                            if \hat{r} = r \bowtie r' and \hat{a} = a \bowtie a'
                                                                                                                                                                                                                                                                                    NET-OPD
                                                     ((p) \cdot (q))a
                                                                                                                                                                    [t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]\hat{r} \triangleright \hat{o}
                                1 p || a ba
                                                                                                                                                                                                                                           if \hat{r} = r \uplus r' and \hat{o} = o \uplus o'
                                                                                                                                                                                                                                                                                      NET-PRI
                                                     (1p) | (a))a
Multi-round semantics
                                                                                                                                                               Single round axioms
                                                 \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP))
                                                 \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP)), where \omega = \pi_1 \circ \pi_2 \circ ... \circ \pi_k
                                                                                                                                                                                                                       (p || p') \cdot (q || q') \le (p \cdot q) || (p' \cdot q')
                                                                                                                                                                                                                                                                                       Sp.Evc
                                                                                                                                                                   [1]0 ► 0 = 1 Sr-One
                                                 \bigcup_{\alpha \in I(n)} \llbracket \omega \rrbracket_I a
                                                                                                                                                                                                                             [b \land t]r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o
                                                                                                                                                                                                                                                                                      SR-CAN
                                                                                                                                                                    \lceil \emptyset \rceil_r \triangleright \rho = 0 SR-ZERO
                                [e]lia ≜
                                                 {a}
                                                                                                                                                                                                                   [t]r \triangleright o + [t']r \triangleright o \equiv [t \lor t']r \triangleright o
                                                                                                                                                                                                                                                                                     Sp.Prits
                                                     \{a \bowtie a \mid r\} if r \subseteq a and At \land a = \top
                                                                              otherwise
             [\pi_1 : \pi_2 : \dots : \pi_k]_{\ell a} \triangleq ([\pi_1]_{\ell} \bullet [\pi_2 : \dots : \pi_k]_{\ell})_a
```

 $[\pi_1 : \pi_2 : ... : \pi_k]_{l,a} \triangleq ([\pi_1]_l \bullet [\pi_2 : ... : \pi_k]_l)_a$

```
Syntax
                     Nodes
                                                               N := A B C
                    Bell pairs
                                                     BP \ni bp ::= N\sim N
                                                                                                                                                                   KA aviome
                                        M(BP) \ni a.b.r.o ::= \{bp_1, ..., bp_k\}
                      Tests
                                                       T \ni t \ t' := 1
                                                                                         no test
                                                                                                                                                                         (p+q)+r \equiv p+(q+r)
                                                                                                                                                                                                                KA-Prite-Assoc
                                                                                                                                                                                                                                                         \rho:1\equiv\rho
                                                                                                                                                                                                                                                                                        KA-SEO-ONE
                                                                                         multiset absence
                                                                                                                                                                                p + q \equiv q + p
                                                                                                                                                                                                                KA-PLUS-COMM
                                                                                                                                                                                                                                                         1: p \equiv p
                                                                                                                                                                                                                                                                                        KA-ONE-SEO
                                                                                         conjunction
                                                                                                                                                                                p + 0 \equiv p
                                                                                                                                                                                                                  KA-PITIS-ZERO
                                                                                                                                                                                                                                                         0: p \equiv 0
                                                                                                                                                                                                                                                                                       KA-Zero-Seo
                                                                                         multiset union
                                                                                                                                                                                                                  KA-Plus-Idem
                                                                                                                                                                                                                                                                                       KA-Seo-Zero
                                                                                                                                                                                p + p \equiv p
                                                                                                                                                                                                                                                         p:0\equiv0
                                                  \Pi \ni \pi, x, y := \lceil t \rceil r \triangleright a
                                                                                                                                                                                                                                                 1 + p : p^* \equiv p^*
                                                                                                                                                                           (p;q);r \equiv p;(q;r)
                                                                                                                                                                                                                 KA-SEO-ASSOC
                                                                                                                                                                                                                                                                                       KA-UNROTT-I
                     Policies
                                                      P \ni \rho : \sigma := 0
                                                                                         ahort
                                                                                                                                                                          p:(q+r)\equiv p:q+p:r
                                                                                                                                                                                                                 KA-Seo-Dist-L
                                                                                                                                                                                                                                                   \rho: r \le r \Rightarrow \rho^{\star}: r \le r
                                                                                                                                                                                                                                                                                            KA-I vp-I
                                                                                         skip or no-round
                                                                                                                                                                                                                KA-SEO-DIST-R
                                                                                                                                                                          (p+q): r \equiv p: r+q: r
                                                                                                                                                                                                                                                 1 + p^* : p \equiv p^*
                                                                                         atomic action
                                                                                                                                                                                                                                                                                      KA-UNROLL-R
                                                                        \pi
                                                                                                                                                                                                                                                  r: \rho \le r \Rightarrow r: \rho^* \le r
                                                                                                                                                                                                                                                                                            KA-LFP-R
                                                                        [t]_{\theta}
                                                                                         guarded policy
                                                                                                                                                                   SKA axioms for |
                                                                                        nondeterministic choice
                                                                        p + q
                                                                                                                                                                              (p \parallel q) \parallel r \equiv p \parallel (q \parallel r)
                                                                                                                                                                                                                       SKA-Pri-Assoc
                                                                                                                                                                                                                                                          p \parallel a \equiv a \parallel p
                                                                                                                                                                                                                                                                                   SKA-PRI-COMM
                                                                        0 - a
                                                                                         ordered composition
                                                                        p \parallel a
                                                                                        parallel composition
                                                                                                                                                                              p \parallel (q+r) \equiv p \parallel q+p \parallel r
                                                                                                                                                                                                                        SKA-PRL-DIST
                                                                                                                                                                                                                                                          1 \parallel p \equiv p
                                                                                                                                                                                                                                                                                     SKA-ONE-PRI
                                                                        p : q
                                                                                         sequential composition
                                                                                                                                                                        (x : p) \parallel (y : q) \equiv (x \parallel y) : (p \parallel q) SKA-Pri-Seo
                                                                                                                                                                                                                                                          0 \parallel a = 0
                                                                                                                                                                                                                                                                                    SKA-ZERO-PRI
                                                                                         Kleene star
                                                                                                                                                                   SKA axioms for
                 Rasic actions
                                                          r \triangleright o ::= [1]r \triangleright o + [r]0 \triangleright 0
                                                           [t] a := [t] 0 \Rightarrow 0 \cdot a
               Guarded policy
                                                                                                                                                                                                                  SKA-ORD-Assoc
                                                                                                                                                                                                                                                                                    SKA-ONE-ORD
                                                                                                                                                                              (p \cdot q) \cdot r \equiv p \cdot (q \cdot r)
                                                                                                                                                                                                                                                             1 \cdot o \equiv o
Test semantics
                                                                                                                                                                             p \cdot (q+r) \equiv p \cdot q + p \cdot r SKA-ORD-DIST-L
                                                                                                                                                                                                                                                             p \cdot 1 \equiv p
                                                                                                                                                                                                                                                                                    SKA-ORD-ONE
                                       dtb \in M(BP) \rightarrow \{T, \bot\}
                                                                                                                                                                             (p+q) \cdot r \equiv p \cdot r + q \cdot r SKA-ORD-DIST-R
                                                                                                                                                                                                                                                             0 \cdot \rho \equiv 0
                                                                                                                                                                                                                                                                                   SKA-ZERO-ORD
                (1)a ≜ ⊤
                                                           dt \bowtie b \land a \implies (dt \land a \land b \land b \land a) \lor db \land a
                                                                                                                                                                       (x;p)\cdot(y;q)\equiv(x\cdot y);(p\cdot q) SKA-ORD-SEQ
                                                                                                                                                                                                                                                             \rho \cdot 0 \equiv 0
                                                                                                                                                                                                                                                                                   SKA-ORD-ZERO
                \langle b \rangle a \triangleq b \not\subset a
                                                           dt \Box t' ba \triangleq dt ba \Box dt' ba, with \Box is either \land or \lor
                                                                                                                                                                   Boolean axioms (in addition to monotone axioms)
Single round semantics
                                     \{p\} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                                                                                                                                                                  1 \bowtie b = 1
                                                                                                                                                                                                               BOOT-ONE-II
                                     10 ha ± 0
                                                                                                                                                                                                                                     (t \wedge t') \bowtie b = t \bowtie b \wedge t' \bowtie b Boot-Cont-U-Dist
                                                                                                                                                                         b \wedge (b \bowtie b') = b
                                                                                                                                                                                                     BOOL-CONT-SUBSET
                                     11ha + [0 ma]
                                                                                                                                                                                                                                     (t \lor t') \uplus b \equiv t \uplus b \lor t' \uplus b Bool-Disi-U-Dist
                                                         \{o \bowtie a \mid r\} if r \subseteq a and \emptyset t \emptyset a = \top
                                                                                                                                                                                 h \lor h' = h \sqcup h'
                                                                                                                                                                                                               BOOL-DIST-U
                                                                                    otherwise
                                                                                                                                                                   Network axioms
                                (p+q)a \triangleq (p)a \cup (q)a
                                                                                                                                                                          [t]r \triangleright a \cdot [t']r' \triangleright a' \equiv [t \land (t' \uplus r)]\hat{r} \triangleright \hat{a}
                                                                                                                                                                                                                                                   if \hat{r} = r \bowtie r' and \hat{a} = a \bowtie a'
                                                                                                                                                                                                                                                                                             NET-OPD
                                 (p \cdot q)a \triangleq ((p) \cdot (q))a
                                                                                                                                                                        [t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]\hat{r} \triangleright \hat{o}
                                                                                                                                                                                                                                                  if \hat{r} = r \uplus r' and \hat{o} = o \uplus o'
                                                                                                                                                                                                                                                                                              NET-PRI
                                (p \parallel q)a \triangleq ((p) \parallel (q))a
Multi-round semantics
                                                                                                                                                                   Single round axioms
                                           \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                 \llbracket \omega \rrbracket_{\Gamma} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP)), \text{ where } \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                                                                                                                                                                                                             (p || p') \cdot (q || q') \le (p \cdot q) || (p' \cdot q')
                                                                                                                                                                                                                                                                                               Sp.Fvc
                                                                                                                                                                        [1]0 ► 0 = 1 SR-ONE
                                  \|p\|a \triangleq \bigcup_{\alpha \in I(p)} \|\omega\|_I a
                                                                                                                                                                                                                                    [b \land t]r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o
                                                                                                                                                                                                                                                                                              SR-CAN
                                 \|e\|_{la} \triangleq \{a\}
                                                                                                                                                                        [\emptyset]r \triangleright a = 0 SR-ZERO
                                                                                                                                                                                                                        [t]r \triangleright o + [t']r \triangleright o = [t \lor t']r \triangleright o
                                                                                                                                                                                                                                                                                              SR-PLUS
                                                     \{o \uplus a \mid r\} if r \subseteq a and \emptyset t \lozenge a = \top
                                                                                otherwise
```

```
Syntax
                      Nodes
                                                                 N := A B C
                     Bell pairs
                                                        BP ∋ bn ::= N~N
                                          M(BP) \ni a.b.r.o ::= \{bp_1, ..., bp_k\}
                       Tests
                                                         T \ni t \ t' := 1
                                                                                             no test
                                                                                             multiset absence
                                                                                             conjunction
                                                                                             multiset union
                                                    \Pi \ni \pi, x, y := \lceil t \rceil r \triangleright a
                     Policies
                                                        P \ni \rho : \sigma := 0
                                                                                             ahort
                                                                                             skip or no-round
                                                                                             atomic action
                                                                           \pi
                                                                            [t]_{\theta}
                                                                                             guarded policy
                                                                                            nondeterministic choice
                                                                           p + q
                                                                                             ordered composition
                                                                           0 - a
                                                                           p \parallel a
                                                                                            parallel composition
                                                                           p : q
                                                                                             sequential composition
                                                                                             Kleene star
                  Rasic actions
                                                             r \triangleright o ::= [1]r \triangleright o + [r]0 \triangleright 0
                                                              [t] a := [t] 0 \Rightarrow 0 \cdot a
                Guarded policy
Test semantics
                                         dtb \in M(BP) \rightarrow \{T, \bot\}
                (1)a ≜ ⊤
                                                              dt \bowtie b \land a \implies (dt \land a \land b \land b \land a) \lor db \land a
                 \langle b \rangle a \triangleq b \not\subset a
                                                              dt \Box t' ba \triangleq dt ba \Box dt' ba, with \Box is either \land or \lor
Single round semantics
                                      \{p\} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                       10 ha ± 0
                                       11ha + [0 ma]
                                                            \{o \bowtie a \mid r\} if r \subseteq a and \emptyset t \emptyset a = \top
                                                                                       otherwise
                                 (p+q)a \triangleq (p)a \cup (q)a
                                  (p \cdot q)a \triangleq ((p) \cdot (q))a
                                  (p \parallel q)a \triangleq ((p) \parallel (q))a
Multi-round semantics
                                             \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                  \llbracket \omega \rrbracket_{\Gamma} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP)), \text{ where } \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                   \|p\|a \triangleq \bigcup_{\alpha \in I(p)} \|\omega\|_I a
                                  \|e\|_{la} \triangleq \{a\}
                                                        \{o \uplus a \mid r\} if r \subseteq a and \emptyset t \lozenge a = \top
                                                                                   otherwise
              [\pi_1 : \pi_2 : ... : \pi_k]_{l,a} \triangleq ([\pi_1]_l \bullet [\pi_2 : ... : \pi_k]_l)_a
```

```
KA aviome
     (p+q)+r \equiv p+(q+r)
                                           KA-Prite-Assoc
                                                                                   \rho:1\equiv\rho
                                                                                                                 KA-SEO-ONE
            p + q \equiv q + p
                                            KA-PLUS-COMM
                                                                                   1: p \equiv p
                                                                                                                 KA-ONE-SEO
            p + 0 \equiv p
                                             KA-PITIS-ZERO
                                                                                   0: p \equiv 0
                                                                                                                KA-Zero-Seo
                                             KA-Plus-Idem
                                                                                                                KA-Seo-Zero
            p + p \equiv p
                                                                                   p:0\equiv0
                                                                           1 + p : p^* \equiv p^*
       (p;q);r \equiv p;(q;r)
                                            KA-SEO-ASSOC
                                                                                                                KA-UNROLL-L
      p:(q+r)\equiv p:q+p:r
                                            KA-Seo-Dist-L
                                                                             \rho: r \le r \Rightarrow \rho^{\star}: r \le r
                                                                                                                      KA-I vp-I
                                            KA-SEO-DIST-R
      (p+q): r \equiv p: r+q: r
                                                                           1 + p^* : p \equiv p^*
                                                                                                                KA-UNROLL-R
                                                                             r: \rho \le r \Rightarrow r: \rho^* \le r
                                                                                                                     KA-LFP-R
SKA axioms for
          (p \parallel q) \parallel r \equiv p \parallel (q \parallel r)
                                                  SKA-Pri-Assoc
                                                                                    p \parallel a \equiv a \parallel p
                                                                                                            SKA-PRI-COMM
          p \parallel (q+r) \equiv p \parallel q+p \parallel r
                                                   SKA-PRL-DIST
                                                                                                              SKA-ONE-PRI
                                                                                    1 \parallel \rho \equiv \rho
    (x : p) \parallel (y : q) \equiv (x \parallel y) : (p \parallel q) SKA-Pri-Seo
                                                                                    0 \parallel a = 0
                                                                                                             SKA-ZERO-PRI
SKA axioms for
                                             SKA-ORD-Assoc
                                                                                                              SKA-ONE-ORD
          (p \cdot q) \cdot r \equiv p \cdot (q \cdot r)
                                                                                       1 \cdot o \equiv o
         p \cdot (q+r) \equiv p \cdot q + p \cdot r SKA-ORD-DIST-L
                                                                                       p \cdot 1 \equiv p
                                                                                                              SKA-ORD-ONE
         (p+q) \cdot r \equiv p \cdot r + q \cdot r SKA-ORD-DIST-R
                                                                                       0 \cdot \rho \equiv 0
                                                                                                             SKA-ZERO-ORD
   (x;p)\cdot(y;q)\equiv(x\cdot y);(p\cdot q) SKA-ORD-SEQ
                                                                                       \rho \cdot 0 \equiv 0
                                                                                                             SKA-ORD-ZERO
Boolean axioms (in addition to monotone axioms)
              1 \bowtie b = 1
                                          BOOT-ONE-II
                                                                (t \wedge t') \bowtie b = t \bowtie b \wedge t' \bowtie b Boot-Cont-U-Dist
     b \wedge (b \bowtie b') = b
                                BOOL-CONT-SUBSET
                                                                (t \lor t') \uplus b \equiv t \uplus b \lor t' \uplus b Bool-Disi-U-Dist
             h \lor h' = h \sqcup h'
                                          BOOL-DIST-U
Network axioms
      [t]r \triangleright a \cdot [t']r' \triangleright a' \equiv [t \land (t' \uplus r)]\hat{r} \triangleright \hat{a}
                                                                             if \hat{r} = r \bowtie r' and \hat{a} = a \bowtie a'
                                                                                                                      NET-OPD
    [t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]\hat{r} \triangleright \hat{o}
                                                                             if \hat{r} = r \uplus r' and \hat{o} = o \uplus o'
                                                                                                                       NET-PRI
Single round axioms
                                                        (p || p') \cdot (q || q') \le (p \cdot q) || (p' \cdot q')
                                                                                                                        Sp.Fvc
    [1]0 ► 0 = 1 SR-ONE
                                                              [b \land t]r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o
                                                                                                                       SR-CAN
    [\emptyset]r \triangleright a = 0 SR-ZERO
                                                   [t]r \triangleright o + [t']r \triangleright o = [t \lor t']r \triangleright o
                                                                                                                       SR-PLUS
```

```
Syntax
                      Nodes
                                                                  N := A B C
                     Bell pairs
                                                        BP ∋ bn ::= N~N
                                           M(BP) \ni a.b.r.o ::= \{bp_1, ..., bp_k\}
                        Tests
                                                          T \ni t \ t' := 1
                                                                                             no test
                                                                                             multiset absence
                                                                                             conjunction
                                                                                             multiset union
                                                     \Pi \ni \pi, x, y := \lceil t \rceil r \triangleright a
                      Policies
                                                         P \ni \rho : \sigma := 0
                                                                                             ahort
                                                                                             skip or no-round
                                                                                             atomic action
                                                                            \pi
                                                                             [t]_{\theta}
                                                                                             guarded policy
                                                                                             nondeterministic choice
                                                                            p + q
                                                                                             ordered composition
                                                                            0 - a
                                                                            p \parallel a
                                                                                             parallel composition
                                                                                             sequential composition
                                                                                             Kleene star
                  Rasic actions
                                                              r \triangleright o ::= [1]r \triangleright o + [r]0 \triangleright 0
                                                              [t] a := [t] 0 \Rightarrow 0 \cdot a
                Guarded policy
Test semantics
                                         dtb \in \mathcal{M}(BP) \rightarrow \{\top, \bot\}
                (1)a ≜ ⊤
                                                               dt \bowtie b \land a \implies (dt \land a \land b \land b \land a) \lor db \land a
                 \langle b \rangle a \triangleq b \not\subset a
                                                              dt \Box t' ba \triangleq dt ba \Box dt' ba, with \Box is either \land or \lor
Single round semantics
                                       \{p\} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))
                                       10 ha ± 0
                                       11ha + [0 ma]
                                                            \{o \bowtie a \mid r\} if r \subseteq a and \emptyset t \emptyset a = \top
                                                                                        otherwise
                                 (p+q)a \triangleq (p)a \cup (q)a
                                   (p \cdot q)a \triangleq ((p) \cdot (q))a
                                  (p \parallel q)a \triangleq ((p) \parallel (q))a
Multi-round semantics
                                              \in \mathcal{M}(BP) \to \mathcal{P}(\mathcal{M}(BP))
                                   \llbracket \omega \rrbracket_{\Gamma} \in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP)), \text{ where } \omega = \pi_1 \circ \pi_2 \circ \dots \circ \pi_k
                                   \|p\|a \triangleq \bigcup_{\alpha \in I(p)} \|\omega\|_I a
                                   \|e\|_{la} \triangleq \{a\}
                                                        \{o \uplus a \mid r\} if r \subseteq a and \emptyset t \lozenge a = \top
                                                                                    otherwise
               [\pi_1 : \pi_2 : ... : \pi_k]_{l,a} \triangleq ([\pi_1]_l \bullet [\pi_2 : ... : \pi_k]_l)_a
```

```
KA aviome
     (p+q)+r \equiv p+(q+r)
                                        KA-Prite-Assoc
                                                                            \rho:1\equiv\rho
                                                                                                        KA-SEO-ONE
            p + q \equiv q + p
                                        KA-PLUS-COMM
                                                                            1: p \equiv p
                                                                                                        KA-ONE-SEO
            p + 0 \equiv p
                                         KA-PITIS-ZERO
                                                                            0: p \equiv 0
                                                                                                       KA-Zero-Seo
                                         KA-Plus-Idem
                                                                                                       KA-Seo-Zero
           p + p \equiv p
                                                                            p:0\equiv0
                                                                     1 + p : p^* \equiv p^*
       (p;q);r \equiv p;(q;r)
                                         KA-SEO-ASSOC
                                                                                                       KA-UNROTT-I
      p:(q+r)\equiv p:q+p:r
                                         KA-Seo-Dist-L
                                                                       \rho: r \le r \Rightarrow \rho^{\star}: r \le r
                                                                                                            KA-I vp-I
                                        KA-SEO-DIST-R
      (p+q): r \equiv p: r+q: r
                                                                     1 + p^* : p \equiv p^*
                                                                                                      KA-UNROLL-R
                                                                      r: \rho \le r \Rightarrow r: \rho^* \le r
                                                                                                           KA-LFP-R
SKA axioms for |
          (p \parallel q) \parallel r \equiv p \parallel (q \parallel r)
                                              SKA-Pri-Assoc
                                                                             p \parallel a \equiv a \parallel p
                                                                                                   SKA-PRI-COMM
         p \parallel (q+r) \equiv p \parallel q+p \parallel r
                                               SKA-PRL-DIST
                                                                                                     SKA-ONE-PRI
                                                                             1 \parallel \rho \equiv \rho
    (x : p) \parallel (y : q) \equiv (x \parallel y) : (p \parallel q) SKA-Pri-Seo
                                                                             0 \parallel a = 0
                                                                                                    SKA-ZERO-PRI
SKA axioms for
                                          SKA-ORD-Assoc
                                                                                                    SKA-ONE-ORD
          (p \cdot q) \cdot r \equiv p \cdot (q \cdot r)
                                                                                1 \cdot o \equiv o
         p \cdot (q+r) \equiv p \cdot q + p \cdot r SKA-ORD-DIST-L
                                                                                p \cdot 1 \equiv p
                                                                                                    SKA-ORD-ONE
         (p+q) \cdot r \equiv p \cdot r + q \cdot r SKA-ORD-DIST-R
                                                                                0 \cdot p \equiv 0
                                                                                                   SKA-ZERO-ORD
    (x : p) \cdot (y : q) \equiv (x \cdot y) \cdot (p \cdot q) SKA-ORD-SEO
                                                                                \rho \cdot 0 \equiv 0
                                                                                                   SKA-ORD-ZERO
Boolean axioms (in addition to monotone axioms)
             1 \bowtie b = 1
                                      BOOT-ONE-II
                                                           (t \wedge t') \bowtie b = t \bowtie b \wedge t' \bowtie b Boot-Cont-U-Dist
     b \wedge (b \bowtie b') = b
                              BOOL-CONT-SUBSET
                                                           (t \lor t') \uplus b \equiv t \uplus b \lor t' \uplus b Bool-Disi-U-Dist
            h \lor h' = h \sqcup h'
                                      BOOL-DIST-U
Network axioms
```

 $[\emptyset]r \triangleright a = 0$ SR-ZERO

 $[b \land t]r \triangleright o \equiv [(r \cup b) \land t]r \triangleright o$

 $[t]r \triangleright o + [t']r \triangleright o = [t \lor t']r \triangleright o$

SR-CAN

SR-PLUS

Syntax Nodes $N := A, B, C,$	
Bell pairs $BP \ni bp ::= N \sim N$ Multisets $\mathcal{M}(BP) \ni a, b, r, o ::= \{\{bp_1,, bp_k\}\}$	KA axioms
Tests $T \ni t, t' := 1$ no test b multiset absence	$(p+q)+r\equiv p+(q+r)$ KA-Plus-Assoc p ; $1\equiv p$ KA-Seq-One
$t \wedge t'$ conjunction	$p+q\equiv q+p$ KA-Plus-Comm 1; $p\equiv p$ KA-One-Seq
$t \lor t'$ disjunction	$p + 0 \equiv p$ KA-Plus-Zero $0; p \equiv 0$ KA-Zero-Seq
$t \uplus b$ multiset union	$p + p \equiv p$ KA-Plus-Idem $p : 0 \equiv 0$ KA-Seq-Zero
Atomic actions $\Pi \ni \pi, x, y := [t]r \blacktriangleright o$ Policies $P \ni p, q := 0$ abort	$(p;q); r \equiv p; (q;r)$ KA-Seq-Assoc $1+p; p^* \equiv p^*$ KA-Unroll-L
1 skip or no-round	$p; (q+r) \equiv p; q+p; r$ KA-Seq-Dist-L $p; r \leq r \Rightarrow p^*; r \leq r$ KA-Lef-L
π atomic action	$(p+q)$; $r \equiv p$; $r+q$; r KA-Seq-Dist-R $1+p^*$; $p \equiv p^*$ KA-Unroll-R
$\mid r \triangleright o \qquad basic action$ $\mid [t]p \qquad guarded policy$	$r; p \le r \Rightarrow r; p^* \le r$ KA-Lep-R
[t]p guaraea poucy p+q nondeterministic choice	SKA axioms for
p · q ordered composition	$(p \parallel q) \parallel r \equiv p \parallel (q \parallel r)$ SKA-Prl-Assoc $p \parallel q \equiv q \parallel p$ SKA-Prl-Comm
Network axioms	$p \parallel (q+r) \equiv p \parallel q+p \parallel r$ SKA-Prl-Dist $1 \parallel p \equiv p$ SKA-One-Prl
Network axioms	$(p) \parallel (y;q) \equiv (x \parallel y); (p \parallel q)$ SKA-Pri-Seq $0 \parallel p \equiv 0$ SKA-Zero-Pri
F.3 F.43 4 4 F (-1	axioms for
$[t]r \triangleright o \cdot [t']r' \triangleright o' \equiv [t \land (t' \uplus r)]\hat{r} \triangleright e$	\hat{O} $(p \cdot q) \cdot r \equiv p \cdot (q \cdot r)$ SKA-Ord-Assoc $1 \cdot p \equiv p$ SKA-One-Ord
	$p \cdot (q+r) \equiv p \cdot q + p \cdot r$ SKA-ORD-DIST-L $p \cdot 1 \equiv p$ SKA-ORD-ONE
$[t]r \triangleright o \parallel [t']r' \triangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]$	$(p+q) \cdot r \equiv p \cdot r + q \cdot r$ SKA-ORD-DIST-R $0 \cdot p \equiv 0$ SKA-ZERO-ORD
$[i] \cap \mathcal{O} \cap [i] \cap \mathcal{O} = [(i \otimes i) \land (i \otimes i)$	$(p) \cdot (y; q) \equiv (x \cdot y); (p \cdot q)$ SKA-ORD-SEQ $p \cdot 0 \equiv 0$ SKA-ORD-ZERO
	ean axioms (in addition to monotone axioms)
(p) $\in \mathcal{M}(BP) \rightarrow \mathcal{P}(\mathcal{M}(BP) \times \mathcal{M}(BP))$ $(0)a \triangleq 0$ $(1)a \triangleq (0 \bowtie a)$ $(1)f \Vdash p \circ a \triangleq \{(o \bowtie a \land r) \text{ if } r \subseteq a \text{ and } (f \land a = \top f \land a)\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{cases} p + q \mid a = \\ 0 & \text{otherwise} \end{cases}$	Network axioms
$ (p + q)a = (p)a \circ (q)a $ $ (p \cdot q)a \triangleq ((p) \cdot (q))a $	$[t]r \blacktriangleright o \cdot [t']r' \blacktriangleright o' \equiv [t \land (t' \uplus r)]\hat{r} \blacktriangleright \hat{o}$ if $\hat{r} = r \uplus r'$ and $\hat{o} = o \uplus o'$ Net-Ord
$(p \parallel q)a \triangleq ((p) \parallel (q))a$	$[t]r \blacktriangleright o \parallel [t']r' \blacktriangleright o' \equiv [(t \uplus r') \land (t' \uplus r)]\hat{r} \blacktriangleright \hat{o}$ if $\hat{r} = r \uplus r'$ and $\hat{o} = o \uplus o'$ Net-Prl
Multi-round semantics	Single round axioms $ \begin{aligned} & [1] \emptyset \blacktriangleright \emptyset \equiv 1 & \text{SR-ONE} & (p \parallel p') \cdot (q \parallel q') \leq (p \cdot q) \parallel (p' \cdot q') & \text{SR-Exc} \\ & [\emptyset \mid r \blacktriangleright o \equiv 0] & \text{SR-Zero} & [b \land l] r \blacktriangleright o \equiv [t \lor t'] r \blacktriangleright o & \text{SR-CAN} \\ & [t] r \blacktriangleright o + [t'] r \blacktriangleright o \equiv [t \lor t'] r \blacktriangleright o & \text{SR-PLUS} \end{aligned} $

Definition 4.7 (Normal form of policies). A policy p is in normal form if it is a finite sum, s.t. every summand has a unique (r, o) pair with the corresponding t in canonical form w.r.t. r and $t \neq r$:

$$p = \sum [t]r \triangleright o$$

PROPOSITION 4.1 (SOUNDNESS AND COMPLETENESS). Let p, q be single round policies. Then p and q are provably equivalent by the BellKAT axioms if and only if (p) = (q).

Theorem 4.2 (Soundness and completeness w.r.t. standard interpretation). Policies p, q are equal under the standard interpretation if and only if they are provably equivalent using BellKAT's axioms. That is, I(p) = I(q) if and only if p = q.

Theorem 4.3 (Soundness of multi-round policies). If policies $p, q \in P$ are equivalent under BellKAT's axioms, then their denotational semantics coincide. That is, $\vdash p \equiv q \Longrightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$.

Definition 4.7 (Normal form of policies). A policy p is in normal form if it is a finite sum, s.t. every summand has a unique (r, o) pair with the corresponding t in canonical form w.r.t. r and $t \neq r$:

$$p = \sum [t]r \triangleright o$$

PROPOSITION 4.1 (SOUNDNESS AND COMPLETENESS). Let p, q be single round policies. Then p and q are provably equivalent by the BellKAT axioms if and only if (p) = (q).

Theorem 4.2 (Soundness and completeness w.r.t. standard interpretation). Policies p, q are equal under the standard interpretation if and only if they are provably equivalent using BellKAT's axioms. That is, I(p) = I(q) if and only if p = q.

THEOREM 4.3 (SOUNDNESS OF MULTI-ROUND POLICIES). If policies $p, q \in P$ are equivalent under BellKAT's axioms, then their denotational semantics coincide. That is, $\vdash p \equiv q \Longrightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$.

Definition 4.7 (Normal form of policies). A policy p is in normal form if it is a finite sum, s.t. every summand has a unique (r, o) pair with the corresponding t in canonical form w.r.t. r and $t \neq r$:

$$p = \sum_{|t|} [t] r \triangleright o$$

Proposition 4.1 (Soundness and completeness). Let p, q be single round policies. Then p and q are provably equivalent by the BellKAT axioms if and only if (p) = (q).

THEOREM 4.2 (SOUNDNESS AND COMPLETENESS W.R.T. STANDARD INTERPRETATION). Policies p, q are equal under the standard interpretation if and only if they are provably equivalent using BellKAT's axioms. That is, I(p) = I(q) if and only if $\vdash p \equiv q$.

THEOREM 4.3 (SOUNDNESS OF MULTI-ROUND POLICIES). If policies $p, q \in P$ are equivalent under BellKAT's axioms, then their denotational semantics coincide. That is, $\vdash p \equiv q \Longrightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$.

Definition 4.7 (Normal form of policies). A policy p is in normal form if it is a finite sum, s.t. every summand has a unique (r, o) pair with the corresponding t in canonical form w.r.t. r and $t \neq r$:

$$p = \sum_{|t|} [t] r \triangleright o$$

PROPOSITION 4.1 (SOUNDNESS AND COMPLETENESS). Let p, q be single round policies. Then p and q are provably equivalent by the BellKAT axioms if and only if (p) = (q).

Theorem 4.2 (Soundness and completeness w.r.t. standard interpretation). Policies p, q are equal under the standard interpretation if and only if they are provably equivalent using BellKAT's axioms. That is, I(p) = I(q) if and only if $\vdash p \equiv q$.

THEOREM 4.3 (SOUNDNESS OF MULTI-ROUND POLICIES). If policies $p, q \in P$ are equivalent under BellKAT's axioms, then their denotational semantics coincide. That is, $\vdash p \equiv q \Longrightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$.

Definition 4.7 (Normal form of policies). A policy p is in normal form if it is a finite sum, s.t. every summand has a unique (r, o) pair with the corresponding t in canonical form w.r.t. r and $t \neq r$:

$$p = \sum [t]r \triangleright o$$

PROPOSITION 4.1 (SOUNDNESS AND COMPLETENESS). Let p, q be single round policies. Then p and q are provably equivalent by the BellKAT axioms if and only if (p) = (q).

THEOREM 4.2 (SOUNDNESS AND COMPLETENESS W.R.T. STANDARD INTERPRETATION). Policies p, q are equal under the standard interpretation if and only if they are provably equivalent using BellKAT's axioms. That is, I(p) = I(q) if and only if $\vdash p \equiv q$.

Theorem 4.3 (Soundness of multi-round policies). If policies $p,q \in P$ are equivalent under BellKAT's axioms, then their denotational semantics coincide. That is, $\vdash p \equiv q \Longrightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$.

Decidability

Theorem 4.4. If p and q are valid policies with respect to $\mathcal{N}_0 \subseteq \mathcal{N}$, then $[\![p]\!] =_{\mathcal{N}_0} [\![q]\!]$ is decidable.

Decidability

Theorem 4.4. If p and q are valid policies with respect to $\mathcal{N}_0 \subseteq \mathcal{N}$, then $[\![p]\!] =_{\mathcal{N}_0} [\![q]\!]$ is decidable.

Reachability property: Does protocol p always or never generate an entangled pair $A \sim E$

$$p;[1]\{\!\{A\sim\!E\}\!\} \blacktriangleright \{\!\{A\sim\!E\}\!\} \equiv_{\mathcal{N}_0} p \quad \text{ or } \quad p;[\{\!\{A\sim\!E\}\!\}]\emptyset \blacktriangleright \emptyset \equiv_{\mathcal{N}_0} p$$

Decidability

Theorem 4.4. If p and q are valid policies with respect to $\mathcal{N}_0 \subseteq \mathcal{N}$, then $[p] = \mathcal{N}_0 [q]$ is decidable.

Reachability property: Does protocol p always or never generate an entangled pair $A \sim E$

$$p;[1]\{\!\{A\sim\!E\}\!\} \blacktriangleright \{\!\{A\sim\!E\}\!\} \equiv_{\mathcal{N}_0} p \quad \text{ or } \quad p;[\{\!\{A\sim\!E\}\!\}]\emptyset \blacktriangleright \emptyset \equiv_{\mathcal{N}_0} p$$

Verify more protocol properties with the BellKAT artifact!

Summary

- BellKAT language to specify quantum networks based on a novel algebraic structure
- Soundness and completeness of BellKAT's axioms w.r.t. their corresponding semantics
- Decidability result for checking semantic equivalence of quantum network protocols
- Prototype tool for automated reasoning about protocols

Summary

- BellKAT language to specify quantum networks based on a novel algebraic structure
- Soundness and completeness of BellKAT's axioms w.r.t. their corresponding semantics
- Decidability result for checking semantic equivalence of quantum network protocols
- Prototype tool for automated reasoning about protocols

THANK YOU!

Expressing failures

$$r \triangleright o + r \triangleright \emptyset \triangleq r \triangleright o + \mathsf{fail}\langle r \rangle$$

Expressing failures

$$r \triangleright o + r \triangleright \emptyset \triangleq r \triangleright o + \mathsf{fail}\langle r \rangle$$

Distill $\{A \sim D, A \sim D\} > \{A \sim D\} + \{A \sim D, A \sim D\} > \emptyset$ on input $\{A \sim D, A \sim D, D \sim E, D \sim E, A \sim E\}$

Expressing failures

$$r \triangleright o + r \triangleright \emptyset \triangleq r \triangleright o + \mathsf{fail}\langle r \rangle$$

Bell pairs: consumed, produced and untouched

Parallel composition

 $\mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle \quad \mathsf{acts on} \ \{\!\!\{ A \sim R, B \sim R, B \sim R, B \sim R', C \sim R', A \sim B \}\!\!\}$

 $(A \sim R)$

 $B \sim R$

 $B\sim R$

 $B\sim R'$

 $C\sim R'$

 $A \sim B$

Input Bell pairs

Parallel composition

Bell pairs: input and consumed, produced

Parallel composition

 $\mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle \quad \text{acts on } \{\!\!\{ A \sim R', B \sim R', \underline{B} \sim R', \underline{B} \sim R', \underline{C} \sim R', A \sim B' \}\!\!\}$

Bell pairs: input and consumed, produced

Parallel composition

 $\mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle \quad \text{acts on } \{\!\!\{ A \sim R', B \sim R', B \sim R', \underline{B} \sim R', \underline{C} \sim R', A \sim B' \}\!\!\}$

Bell pairs: input and consumed, produced

Single round protocols

Parallel composition

 $\mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle \quad \text{acts on } \{\!\!\{ A \sim R, B \sim R, B \sim R, B \sim R', C \sim R', A \sim B \}\!\!\}$

Single round protocols

Parallel composition

 $\mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle \quad \text{acts on } \{\!\!\{ A \sim R, B \sim R, B \sim R, B \sim R', C \sim R', A \sim B \}\!\!\}$

The order of basic actions is independent for this input multiset, thus:

$$\mathsf{sw} \langle A \sim B @ R \rangle \cdot \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \cdot \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim C @ R' \rangle = \mathsf{sw} \langle A \sim B @ R \rangle \parallel \mathsf{tr} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R' \sim R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \to R \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \to R \rangle \parallel \mathsf{sw} \rangle \parallel \mathsf{sw} \langle B \sim R \to R \to R \to R \rangle \parallel \mathsf{$$

$$sw\langle A \sim B @ R \rangle \parallel tr\langle B \sim R \rightarrow R' \sim R \rangle \parallel sw\langle B \sim C @ R' \rangle$$

$$\mathsf{sw}\langle A \sim B @ R \rangle \cdot \mathsf{tr}\langle B \sim R \to R' \sim R \rangle \cdot \mathsf{sw}\langle B \sim C @ R' \rangle$$

$$\mathsf{sw}\langle A{\sim}B @ R \rangle \cdot \mathsf{tr}\langle B{\sim}R \to R'{\sim}R \rangle \cdot \mathsf{sw}\langle B{\sim}C @ R' \rangle$$

$$\mathsf{sw}\langle A{\sim}B @ R \rangle \cdot \mathsf{tr}\langle B{\sim}R \to R'{\sim}R \rangle \cdot \mathsf{sw}\langle B{\sim}C @ R' \rangle$$

$$sw\langle A \sim B @ R \rangle \cdot tr\langle B \sim R \rightarrow R' \sim R \rangle \cdot sw\langle B \sim C @ R' \rangle$$

²Bell pairs: input and consumed, produced.

 $\mathsf{sw}\langle A{\sim}B @ R \rangle \cdot \mathsf{tr}\langle B{\sim}R \to R'{\sim}R \rangle \cdot \mathsf{sw}\langle B{\sim}C @ R' \rangle$

$$\mathsf{sw}\langle A \sim B @ R \rangle \cdot \mathsf{tr}\langle B \sim R \rightarrow R' \sim R \rangle \cdot \mathsf{sw}\langle B \sim C @ R' \rangle$$

$$\mathsf{tr}\langle B \sim R \to R' \sim R \rangle \cdot \mathsf{sw}\langle A \sim B @ R \rangle \cdot \mathsf{sw}\langle B \sim C @ R' \rangle$$

 $A \sim R$

 $B \sim R'$

 $C \sim R'$

 $A \sim B$

$$sw\langle A \sim B @ R \rangle \cdot tr\langle B \sim R \rightarrow R' \sim R \rangle \cdot sw\langle B \sim C @ R' \rangle$$

$$\operatorname{tr}\langle B{\sim}R{\,\rightarrow\,}R'{\sim}R\rangle\cdot\operatorname{sw}\langle A{\sim}B@R\rangle\cdot\operatorname{sw}\langle B{\sim}C@R'\rangle$$

$$sw\langle A \sim B @ R \rangle \cdot tr\langle B \sim R \rightarrow R' \sim R \rangle \cdot sw\langle B \sim C @ R' \rangle$$

$$\mathsf{tr} \langle B \sim\!\! R \rightarrow\! R' \sim\!\! R \rangle \cdot \mathsf{sw} \langle A \sim\!\! B @ R \rangle \cdot \mathsf{sw} \langle B \sim\!\! C @ R' \rangle$$

$$sw\langle A \sim B @ R \rangle \cdot tr\langle B \sim R \rightarrow R' \sim R \rangle \cdot sw\langle B \sim C @ R' \rangle$$

$$\mathsf{tr} \langle B \sim\!\! R \rightarrow\! R' \sim\!\! R \rangle \cdot \mathsf{sw} \langle A \sim\!\! B @ R \rangle \cdot \mathsf{sw} \langle B \sim\!\! C @ R' \rangle$$

$$\mathsf{sw}\langle A \sim B @ R \rangle \cdot \mathsf{tr}\langle B \sim R \rightarrow R' \sim R \rangle \cdot \mathsf{sw}\langle B \sim C @ R' \rangle$$

$$\mathsf{tr} \langle B \sim\!\! R \rightarrow\! R' \sim\!\! R \rangle \cdot \mathsf{sw} \langle A \sim\!\! B @ R \rangle \cdot \mathsf{sw} \langle B \sim\!\! C @ R' \rangle$$

 $sw\langle A \sim B @ R \rangle \parallel tr\langle B \sim R \rightarrow R' \sim R \rangle \parallel sw\langle B \sim C @ R' \rangle$

• *Reachability.* Will the execution of our protocol generate *A*~*C*?

- *Reachability.* Will the execution of our protocol generate $A{\sim}C$?
- Waypoint Correctness. Does our protocol ever perform a swap at node B?

- *Reachability.* Will the execution of our protocol generate $A{\sim}C$?
- Waypoint Correctness. Does our protocol ever perform a swap at node B?
- *Traffic (Protocol) Isolation.* Can we prove non-interference in a composition of Protocols I and II?

- *Reachability.* Will the execution of our protocol generate $A{\sim}C$?
- Waypoint Correctness. Does our protocol ever perform a swap at node B?
- Traffic (Protocol) Isolation. Can we prove non-interference in a composition of Protocols I and II?
- Compilation. Can we ensure correct compilation to individual devices?

Verification - properties specific to quantum

 Resource Utilization. What is the number of required memory locations and communication qubits? For how many rounds must a Bell pair wait in the memory?

Verification - properties specific to quantum

- Resource Utilization. What is the number of required memory locations and communication qubits? For how many rounds must a Bell pair wait in the memory?
- Quality of Service. Do the generated Bell pairs have the required fidelity or capacity?

Verification - properties specific to quantum

- Resource Utilization. What is the number of required memory locations and communication qubits? For how many rounds must a Bell pair wait in the memory?
- Quality of Service. Do the generated Bell pairs have the required fidelity or capacity?
- Compilation. Can we minimize the number of accesses to the network global state?

Quantum network

What/Key service: providing communication services to distributed quantum applications

How: end-to-end Bell pair distribution²

 $^{^1 \}mbox{[Kozlowski, Wehner NANOCOM 2019]}, \, ^2 \mbox{[RFC 9340 IRTF-QIRG 2023]}$

Quantum network

¹[Kozlowski, Wehner NANOCOM 2019], ²[RFC 9340 IRTF–QIRG 2023]

Bell pair generation: Protocol I

Bell pair generation: Protocol I, round 1

- Bell pair
- Physical path
- Node
- --- Transmitted link

Bell pair generation: Protocol I, round 2

- Bell pair
- Physical path
- Node
- --- Transmitted link
- Swapped link

Bell pair generation: Protocol II

Bell pair generation: Protocol II

Bell pair generation: Protocol II, round 1

- Bell pair
- Physical path
- Node
- --- Transmitted link

Bell pair generation: Protocol II, round 2

- Bell pair
- Physical path
- Node
- --- Transmitted link
- Swapped link